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The need for computational modeling of a subsonic gas flow through a region of intensive 
energy release arose in particular because such a flow occurs in the discharge chamber of 
transverse-flow continuous wave (cw) CO 2 lasers [i, 2]. The distributions of the gasdynamic 
characteristics of the flow in the discharge zone are determined by the density Q of the power 
expended on heating the gas, which depends on the discharge power, the efficiency of excita- 
tion of laser levels, and the intensity of the output radiation. In most studies on the design 
of transverse-flow cw lasers [3-6], the flowin the discharge zone is modeled on the basis of 
a system of equations of one-dimensional gasdynamics. Such a quasi-two-dimensional model of 
the flow proposes that the gasdynamic characteristics be calculated from a set of horizontal 
sections of the flow, which altogether give a two-dimensional field of the distribution of 
the flow parameters in the discharge zone. In the general case the spatial distribution of 
the energy input Q can be rather nonuniform. This results in a nonzero transverse component 
of the flow velocity and, in the final account, a redistribution of the gasdynamic parameters 
between neighboring longitudinal sections. In principle, this cannot be taken into account 
in the quasi-two-dimensional approximation and, therefore, calculation in the one-dimensional 
model gives an unquestionably inaccurate result. 

No studies have been carried out on the error of quasi-two-dimensional calculations in 
comparison with the two-dimensional gasdynamic approximation as well as on the dependence of 
this error on the flow parameters at the entrance to the discharge gap and on the absolute 
value of the energy input and its degree of nonuniformity. 

Our aim here is to determine the limits of applicability of the model of one-dimensional 
gasdynamics for calculating the flow parameters in the discharge gap of a transverse-flow 
cw laser. For this purpose, on the basis of the solution of the system of gasdynamic equa- 
tions of a nonviscous thermally nonconducting compressible gas, we studied the effects of the 
two-dimensionality of the subsonic steady-state flow in the discharge zone at flow parameters 
at the entrance of the discharge gap that are typical of most transverse-flow lasers. 

i. Formulation of the Problem. We consider a plane steady-state flow of a compressible 
sas with initial velocity u 0 through the zone of energy release {0 < x i X, 0 S y E Y} with 
an assigned field of power density Q. The occurs in a rectangular channel (Fig. i). 

We shall show that the viscosity and heat conduction can be disregarded in the model 
of the motion of the active medium of a transverse-flow cw laser with charactersitic velocity 
u 0 = 30 m/sec, pressure P0 = 2-67"i0-~ N/m, density P0 = 2"10-2 kg/m3 and an energy-release 
zone measuring ~x = 0.i m and ~ = 0.05 m. We assumed that the coefficient of dynamic viscos- 
ity of the mixture of gases in the active medium of a CO 2 laser is determined mainly by ni- 
trogen: D = 1-8"10-5 kg/m.sec. Then the size the boundary layer is ~ ~ ~//P0U0~/N - 10 -3 m 
<< ~y < ~x- Thus, the flow in the discharge zone can be described in the model of a nonvi- 
scous gas, near the channel walls as well. 

The characteristic scale associated with the heat-conducting mixture, which is determined 
primarily by helium (thermal conductivity coefficient %He = 0.3 W/m.K and heat capacity 
Cp = 1"10 -3 cal/(kg'K), is 

Ax~N~He/(pouoCp).-~,tO-~ m<</u< lx. 
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Fig. i 

Accordingly the steady-state distributions of the density P, longitudinal (u) and transverse 
(v) components of the velocity, and the pressure p in the discharge zone will be solutions 
of the system of gasdynamic equations 
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(l.i) 

[y is the adiabatic exponent, v ~ = u 2 + v 2, and E is the internal energy, determined from 
the equation of state E = p/(p(y - i))]. 

System (i.i) is supplemented withe the boundary conditions 

o(O,y)=po, u(O,y)=Uo, v(O,y)=O, p(O,y)=po, 
v(x, O) = v(z ,  Y )  = O. (1.2) 

The gas temperature is found from the equation p = pRT/~, where R is the universal gas 
constant and ~ is the molecular mass of the mixture. 

2. Method of Solution. At the subsonic flow velocitities characterististic of our 
problem system (i.i) is elliptical. Problems of this type are commonly solved by means of 
the steady-state method [7]. Instead of (I.i) we examine a nonstationary system of hyper- 
bolic equations. 

o Z A  o ~-U+o x + ~ B = . C  (2.1) 

(U = (p, pu, pv, p~)) with the initial conditions 

p(x, y ,  O) = po, u(z ,  y ,  O) = Uo, v(x, y ,  O) = O, 

p(x, y, O) = p o .  (2.2) 

As t§ the solution of (2.1), (2.2) tends to the solution of the stationary problem (i.i), 
(1.2), satisfying the laws of conservation of mass, momentum, and energy. 

For the numerical calculation to find a steady-state solution approximating the solu- 
tion of nonsteady problem (2.1), (2.2), we chose an explicit scheme for the decay of an dis- 
continuity [7], which allows the flow parameters to be determined by a single method at points 
both in the interior points and on the boundary of the computing region. 

Let us consider the formulation of the boundary conditions in greater detail. The condi- 
tions for no flow, i.e., Vg = 0, are assigned at the horizontal boundaries of the computing 
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region. In the calculation of the decay of a discontinuity at these bounderies the oncoming 
wave is reflected from the well. A condition imposed at the right boundary is that no peturba- 
tions arrive into the computing region from the outside [8], which is also easily realized in 
the algorithm for calculating the decay of the discontinuity. In the initial stage of forma- 
tion of a flow shock waves propagate from the front boundary of the region of energy release: 
downward and upward along the flow. The wave moving Jownward along the flow passes right 
through the right boundary without reflecting and, therefore, has no effect on the develop- 
ment of flow in the region of energy release. The other shock wave propagates without ob- 
stacle upward along the flow since its velocity is much lower than that of sound in the gas. 
Under the conditions without energy dissipation this wave can move upward along the flow to 
infinity, without being damped and leaving behind it some p*, u*, v*, and p*, which are in- 
dependent of the magnitude of energy input. Thus, in order to formulate the conditions at 
the left boundary it is necessary to simulate the motion of a shock wave along an unperturbed 
flow to infinity. We propose to do this as follows. The left boundary is removed from the 
zone of energy release to a distance of three or four interlectrode gaps, where the oncoming 
shock wave can be assumed to have a plane front. The decay of the discontinuity is calculated 
at the boundary point x 0. To the left of x e the gas is assumed to be unperturbed, i.e., to 
have the initial flow parameters, white to the right it is assumed to have the parameters 
p*, u*, v*, and p* of the oncoming wave. The flow parameters established at point x 0 during 
the boundary decay of the discontinuity are taken to be boundary values. In this way the in- 
teraction of the shock wave with the initial flow is realized and as a result at 
the left boundary we determine R b = P(X0) , U b = u(x0) , and Pb = p(x0), which depend 
on both the parameter of the unperturbed flow and on the power of the energy release, thus 
reflecting the effect of the energy release on the subsonic flow of the gas ahead of the 
discharge region. As shown by calculations, this effect manifests itself in the lift effect 
of the flow, which is characteristic of the streamline flow problem. The longitudinal velo- 
city U b established at the left boundary, for example, is 15-20% lower than the initial flow 
velocity, in proportion to the input power. The new boundary values of the density and pres- 
sure differ little from the initial values: 

(Pb -- Po)@o -- 2%, (Rb --Po)/Po ~ 2 %. 
Stability difference schemes provide a choice of iterative step from time to time in 

accordance with the condition 
= F / ( i / ~  + ~) ,  

where ~x = hx/(~ + u~; ~v = hy/(co-~v ~ , F is the Courant number, c o is the velocity of sound 
in the unperturbed gas, and h x and hy are the spatial intervals of the net. 

A major drawback of the steady-state method as applied to the problem formulated here 
is that it converges slowly to a stationary solution. This is due to the subsonic velocity 
of the flow in the entire region studied as well as the absence of dissipation processes in 
the mathematical model. The initial perturbations caused by the heatingof the medium in 
the discharge zone propagate both downward and upward along the flow, interacting with each 
other and with the boundaries of the computing region. Since the model does include mecha- 
nisms of perturbation damping, such motions can continue to infinity without a steady flow 
being established. Since an approximation viscosity appears in the difference scheme, how- 
ever, perturbationdamping does occur and the flow becomes steady. In calculations carried 
out, about 2500 time steps were required for complete convergence; on a grid with 1200 nodes 
this took about 30 min on a BESM-6 computer. 

Clearly, determination of the gasdynamic characteristics of the flow of the active medium 
of a laser on the basis of a solution of two-dimensional gasdynamic equations by the steady- 
state method is virtuallyinapplicable because of the long computer time needed. A more 
economical approach to the solution of system (i.i), (1.2), therefore, is required. 

A characteristic feature of the steady-state solution of a nonstationary problem is an 
almost uniform pressure field in the discharge zone (e.g., the maximum deviation from pres- 
sure uniformity is less than 0.5%). Evidently, the approximation of a constant pressure 
p(x, y) = const should be considered to be good enough for solving the stationary system (i.i) 
(1.2). In the momentum transfer equation, however, the velocity components are determined 
by the pressure gradient 

(v.V)v = i/p'VP. (2 .3 )  
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Satisfactory information about u and v cannot beobtained from (2.3) at p = const. This dif- 
ficulty can be obviated by going over to the new variables ~ and m which are derived as fol- 

lows: 

pu = ~/~y, pv = --O~/Ox, ~ = c u r l y  = O~ax -- ~u/~y. ( 2 . 4 )  

The e q u a t i o n s  o f  s t e a d y - s t a t e  ga sdynamics  ( 1 . 1 )  in  t h e s e  v a r i a b l e s  a r e  t r a n s f o r m e d  t o  t h e  
form [9 ,  10] 

div(pv~) = --curl (P.VV~/2), div(pv//) = Q ( 2 . 5 )  

(H=w--F~/2 and w = ~/(?--i).p/p i s  t h e  e n t h a l p y  o f  t h e  g a s ) .  S e t t i n g  p = P0 = c o n s t ,  we 
c l o s e  s y s t e m  ( 2 . 4 ) ,  ( 2 . 5 ) .  I t  can  be s o l v e d  by t h e  i t e r a t i o n  method ( f o r  more d e t a i l s  on 
t h e  n u m e r i c a l  a l g o r i h m  o f  t h i s  method s ee  [9 ,  1 0 ] ) .  

As shown by c a l c u l a t i o n s ,  t h e  a p p r o x i m a t i o n  o f  a c o n s t a n t  p r e s s u r e  p (x ,  y)  = P0 i s  s u f -  
f i c i e n t l y  r e l i a b l e  f o r  t h e  p rob lem u n d e r  c o n s i d e r a t i o n .  Th i s  f o l l o w s  f rom t h e  good a g r e e -  
ment be tween t h e  r e s u l t s  o f  s o l v i n g  t h e  gasdynamic  e q u a t i o n s  by t h e  s t e a d y  method and t h e  
e q u a t i o n s  in  t h e  v a r i a b l e s  ~ and ~ by t h e  i t e r a t i o n  method.  We n o t e  t h a t  i m p l e m e n t a t i o n  o f  
t h e  i t e r a t i o n  method o f  s o l v i n g  t w o - d i m e n s i o n a l  e q u a t i o n s  meant  an a l m o s t  t w e n t y - f o l d  s a v i n g  
o f  t ime  in  c o m p a r i s o n  w i t h  s o l u t i o n  by t h e  i t e r a t i o n  method.  

3. R e s u l t s  o f  C a l c u l a t i o n s  and D i s c u s s i o n .  We c a r r i e d  o u t  a s e r i e s  o f  model  computa -  
t i o n s  o f  t h e  d i s t r i b u t i o n s  o f  t h e  g a s - f l o w  p a r a m e t e r s  in  t h e  d i s c h a r g e  zone w i t h  d i f f e r e n t  
c o n f i g u r a t i o n s  o f  t h e  r e g i o n  o f  e n e r g y  r e l e a s e  a n d d i s t r i b u t i o n s  o f  t h e  d e n s i t y  o f  t h e  e n e r g y  
i n p u t  Q in  t h e  volume.  The f low p a r a m e t e r s  a t  t h e  e n t r a n c e  i n t o  t h e  d i s c h a r g e  zone were 
u 0 = 30 m / s e c ,  P0 = 2 .67"102  N/m2, To =300 K, which  i s  c h a r a c t e r i s t i c  o f  most  t r a n s v e r s e -  
f low l a s e r s .  

Suppose that the distribution of the discharge-power distribution in the zone of energy 
release is 

Iqoy/(o.5r), o<z<~ x, o<~y~ &5r, (3. l) 
Q(x,y) = [Qo(y_ y)/(o.5Y) ' O~ x ~  X, 0 . 5 ~ y ~  Y, 

where Q0 was chosen so as to ensure a roughly two-fold rise in temperature at the end of the 
discharge zone along layer y = 0.5 Y. The distributions of the normalized longitudinal velo- 
city u/c 0 (c o = yV~-T 0 is the velocity of sound) and of the gas density P/P0 along the flow 
with a given model field of energy input (3.1) are shown in Figs. 2 and 3. The distributions 
along the horizontal section y = 0.5 Y, where the energy input is maximum, are shown in Fig. 
2 and along the section y = 0 (Q = 0), in Fig. 3. The dashed curve corresponds to the solu- 
tion of two-dimensional nonstationary gasdynamic equations by the steady-state method and the solid 
curve corresponds to the solution of the equations in the variables ~ and ~ by the intera- 
tion method in the constant-pressure approximation. The results of the solution of the two- 
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dimensional equations by the indicated methods are in good agreemnt. The largest deviation 
in the solutions for the longitudinal velocity is 6u = 5% at the beginning of the energy- 
input zone; this apparently is attributable to the lift effect of the flow, which is most 
pronounced in the solution of the nonstationary problem. The solutions for the density and 
temperature have smaller discrepancies, the largest being 6p = 3% and ~T = 3% at the right 
boundary of the discharge zone. 

The dash-dot lines in Figs. 2 and 3 represent the quasi-two-dimensional solution of the 
gasdynamic equations without allowance for the variation of the gasdynamic paramters in the 
direction transverse to the flow. A comparison of the quasi-two-dimensional and two-dimen- 
sional solution reveals that the largest deviations are observed in the solutions for the 
longitudinal flow velocity. For the energy-input distribution considered, with a maximum 
in the central horizontal layer, when the transverse velocity components are included in 
the two-dimensional model the gas flows more quickly along the boundary layers, where the 
energy input is minimum, and, conversely, slows down along the layer of maximum energy input. 
As a result, at the right boundary of the discharge zone the two-dimensional model under- 
estimates the longitudina~ velocity by almost 20% in the central layer and overestimates 
it by 30% at the walls in comparison with the quasi-two-dimensional solution. 

Figures 4 and 5 show the distribution fields of the longitudinal flow velocity in the 
discharge zone, which were obtained, respectively, in the two-dimensional and quasi-dimen- 
sional gasdynamic solutions. On the whole, the pattern of flow in the two-dimensional solu- 
tion is qualitatively different than in the quasi-two-dimensional solution. Because of the 
lift effect of the flow near the left boundary the gas flows more quickly" at the wmlls thanat 
the center, where the energy release is high. Further down the flow the gas in the central 
layers of the flow is accelerated more quickly and as a result the velocity profile is evened 
out in the cross sections near the middle of the discharge zone. At the right boundary the 
velocity at the wall is already 90% of the velocity in the central layer (50% in the quasi- 
two-diemnsional solution). Thus, a smoother profile of the longitudinal velocity in sections 
transverse to the flow is characteristic of the two-dimensional solution. 

The transverse components of the flow-velocity vector in the case under consideration 
were small, amounting to no more than 7-8% of the longitudinal velocity components. 

In regard to the density and temperature the two-dimensionality effect manifests itself 
only in layer of maximum energy input. Here at the end of the discharge the density decreases 
and the temperature rises by 10% in comparison with the quasi-two-dimensional solution. 
This is because in the two-dimensional solution the gas flows more slowly in the central 
layers, remains in the discharge zone longer, and hence heat up more. The hotter gas is ex- 
pelled from the central layer of the flow to the walls of the channel. It would seem that 
the density in the boundary layers of the flow should increase in comparison with the quasi- 
two-dimensional solution. This does not happen, however, because the gas moves more quickly 
near the walls than in the quasi-two-dimensional case and the main mass transport occurs in 
the boundary regions. The mass flow at the walls in the two-dimensional solution is 1.8 
times that at the center. As a result of a rise in gas density and a corresponding decrease 
in gas temperature near the walls, where the energy input is a minimum, this does not occur. 

When the transverse velocity components are included in the two-dimensional model the 
mass flow m = pu, with a uniform field m(x, y) = p0u0 in the quasi-two-dimensional solution, 
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is redistributed substantially among the horizontal sections. Near the channel walls at the 
end of the discharge zone the mass flow in the two-dimensional solution is 1.3 times that in 
the quasi-two-dimensional solution and decreases by a factor of 1.4 with respect to the central 
layer of maximum energy input. The gas flow rate through the cross section x = X remains 
constant in both cases. 

Let us consider how much the solutions deviate when the initial flow velocity is varied. 
Figure 6 shows the relative deviation of the two-dimensional solution for velocity u (2) and 
temperature T (2) from the quasi-two-dimensional solution u(1) and T (1) in the cross section x = X 
of the flow attheend of the discharge zone, which was obtained for a Gaussian distribution 
of the input-power density in the discharge zone: 

Q(x, y) = Q~ exp{ -O,Oi  x 

x [(x - x 'F"  + (y - y*)~]} 

(Qo = tO W/cm~, x* = O,5X, y* = 0.5 Y). 

The curves correspond to different values of the initial flow velocity: 1-3) u 0 = 20, 40, 70 
m/sec at P0 = 2.67"103 N/m2, To = 300 K. Into our discussion we introduce the quantity 
km = max T(x, y)/T0, which characterizes the heating of the gas. For the given case k T = 3.5, 

2, and 1.5. 

From the graphs we see that the largest deviation of the solutions for the velocity are 
observed in regions of extreme energy release and decrease as the initial flow velocity 
rises, which corresponds to a decrease in k T. In this case there exists a horizontal layer, 
near the layer of half energy release, along which the solutions for the velocity coincide, 
regardless of the initial flow velocity. The deviation of the solutions for the gas tem- 
perature also decrease with decreasing initial velocity. Near the walls, where the energy 
input is minimum, the solutions virtually coincide, regardless of the initial velocity. 

In summary, for any distribution of the power input there exist such initial flow veloc- 
ities that the difference between the solutions are small and the quasi-two-dimensional model 
can be used to find the flow parameters in the zone of energy input with good accuracy. For 
the case under consideration this is possible at flow velocities u 0 ~ 70 m/sec. The heating 
of the gas depends on both how long the gas is in the discharge zone, i.e., the flow velocity, 
and on the absolute value of the energy input Q. In this sense the temperature distribution 
in the discharge zone is the result of a distribution of the longitudinal flow velocity in the 
the discharge zone. The applicability of the quasi-two-dimensional model to the calculation 
of the flow characteristics must be assessed from the deviation in the solution for the tem- 

14 



perature and we can consider the heating k T of the gas to be the most universal criterion 
of applicability of the quasi-two-dimensional model. Accordingly, the following approach 
is proposed for selecting the model for calculating the gasdynamic characteristics of the 
flow of active medium in a transverse-flow gas-discharge laser. If the degree to which the 
gas is heated by the end of the discharge zone does not exceed k T = 1.5-1.7, then the quasi- 
two-dimensional model can be used to find the flow parameters with good accuracy (6 T/T E 5%, 
which is comparable with the experimental error). 
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